ICS 103: Computer Programming in C
Spring Semester 2011-2012 (Term-112)
Lab 10: How to Use 1-D array with Functions
Objective:

Practice how to use one-dimensional arrays with function.

Background:

 You can pass individual array elements or their addresses to a function that has normal or pointer variables as arguments respectively. Array elements behave like normal variables.

 We can also have a function that takes the whole array as argument. Such a function does not create a local array when called; instead it will just receive the address of the actual array (the one used in the call) and work directly on its elements. Thus array addresses are passed in a function call. An example of a prototype of a function that has an array as argument is:
void print_array (double a[], int n);

As noticed above, we use square brackets without specifying the size. But in addition to the array, we need the number of elements of the array and this is why we have the second argument n. When calling such a function, we use the name of the actual array without square brackets for the first argument. For the second argument, we use the size of the actual array if it is full, otherwise we use the actual number of the elements present in the array if it is partially filled.

When arrays are used as arguments, they behave like pointers. Since the function is able to access all the elements of the actual array because it has received its address, it can use the values of the array elements. In this case, the array is used as input. It can also assign values to the elements of the array; In such a case, the array is used as output. It can also modify the values of the array elements; leading to the array being used for both input and output. More clarification for this issue by looking at the functions examples covered in the lecture:

void print_array (double a[], int n); array used for input. The function accesses the values and print them on the screen
void get_average (double a[], int n); array used for input. The functions uses the array values to find sum and average.

void get_max_min (double a[], int n, double *max, double *min); array used for input. The function uses the array values to find maximum and minimum.

void read_array (double a[], int n); array used for output. The function reads values from the user and assigns them to the elements of the array.
void double_array (double a[], int n); Here the array is used for both input and output. When calling the function, the array has already values in its elements. The function modifies these values by multiplying them by 2. Thus the modified array will be output.

void reverse_array (double a[], int n); Here also the array is used for input and output. Values are already present in the array when the function is called (input). These values are modified by reversing their order (output).

The following example shows the use of a function with array as argument.

#include <stdio.h>

#define SIZE 10

int sumValues (int a[], int n); //function prototype
int main() {

 int values[SIZE];

 int total_sum,i;

 printf("Enter %d integer values >",SIZE);

 for(i=0;i<SIZE;i++)

 scanf("%d",&values[i]);

 total_sum = sumValues (values, SIZE); //function call
 //The function accesses directly the elements of array values. It does

 // not create a local array a
 printf("Total sum=%d",total_sum);

 return 0;

}

// function definition

int sumValues (int a[], int n) {
 int i,sum = 0;

 for(i=0; i < n; i++)

 sum+=a[i];

 return sum;

}
Exercises:

Exercise # 1:

Write a program that reads from the user two arrays of the same size:

Array A: contains double numbers representing the students’ lab marks

Array B: contains integer numbers representing the total absences for each student.

The program then calls a function called (calcTotal) that will take array A and B as an input and returns an array C of type double that contains the result of subtracting each element in B from the corresponding element in A.
In the main function, make the size of the array 50 to be declared as a constant. The actual number of students will be read from the user (5 in the present example).
Example:

	Array A
	78.0
	90.0
	55.5
	85.7
	99.0

	Array B
	5
	3
	2
	0
	3

	Array C
	73.0
	87.0
	53.5
	85.7
	96.0

Exercise # 2:

Write a program that reads a list of students’ marks and prints the following:

1- The minimum grade.

2- The maximum grade.

3- The corresponding letter grade for each student according to the following table:

	Mark
	Letter

	>= 90
	A

	>=75 && <90
	B

	>=65 && <75
	C

	>=50 && <65
	D

	<50
	F

Use the following functions to solve the problem:

	readArray A function that takes two parameters: (From lecture slides)
1- double array.

2- Integer n representing the size of the array.

The function should return an array containing (n) numbers read from the user.

	minMax A function that takes an array as an input and returns two values (the minimum and the maximum numbers found in the array). (From lecture slides)

	calcGrade A functions that takes a double array containing the students ‘ marks and returns another array of type char containing the corresponding letter grade for each student.

Exercise # 3:

Write a C program that declares 3 integer 1-D arrays x, y, and z of size SIZE (constant to be defined equal to 10). The program then reads values for x and y arrays from the user (use some common values). For the reading use the function read_array.

Finally the program finds the common values in x and y. To achieve this, you need to write a function intersection that receives 2 integer arrays as input arguments and a third array z to be used as output to contain the common values. In addition to putting the common values in array z, the function returns the number of common values.
After calling the intersection function, your main function will display the contents of the three arrays on the screen. For printing use the function print_array.
PAGE
1

